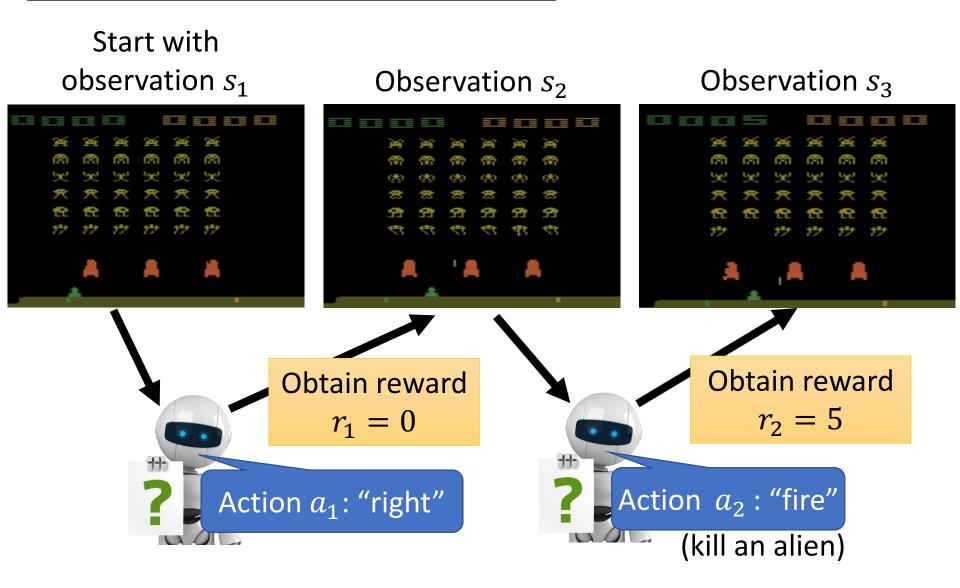
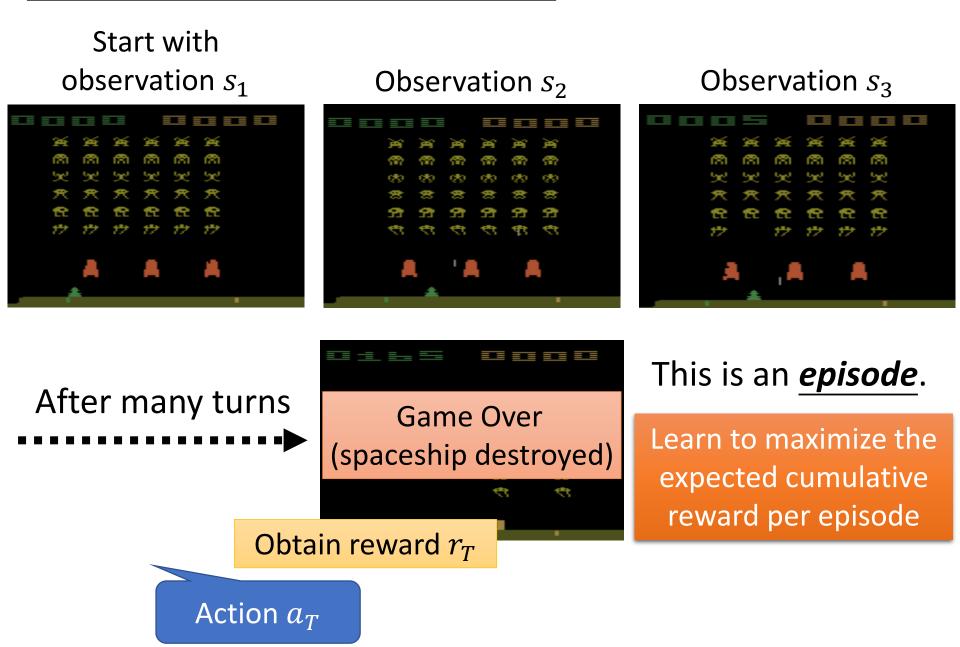
Deep Reinforcement Learning

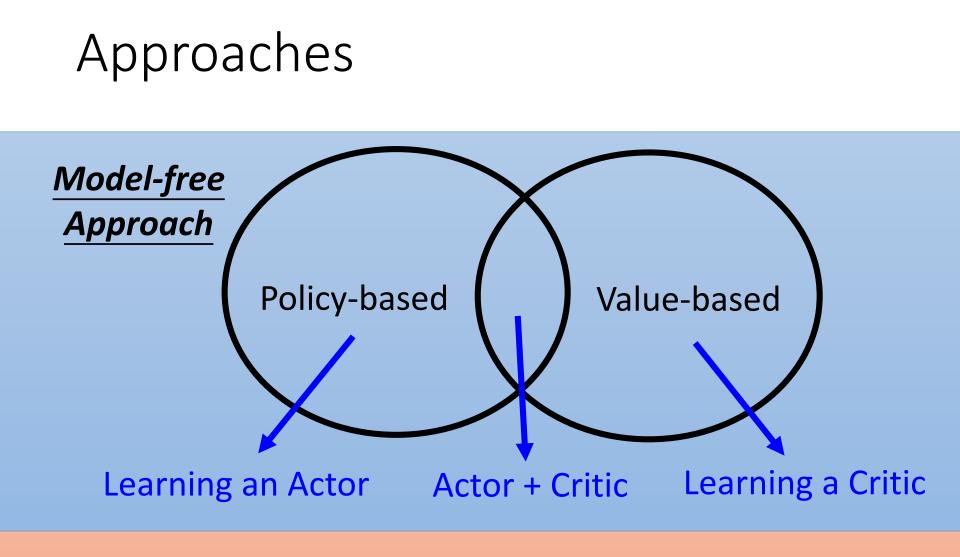
Example: Playing Video Game



Usually there is some randomness in the environment

Example: Playing Video Game





Model-based Approach

On-policy v.s. Off-policy

- On-policy: The agent learned and the agent interacting with the environment is the same.
- Off-policy: The agent learned and the agent interacting with the environment is different.

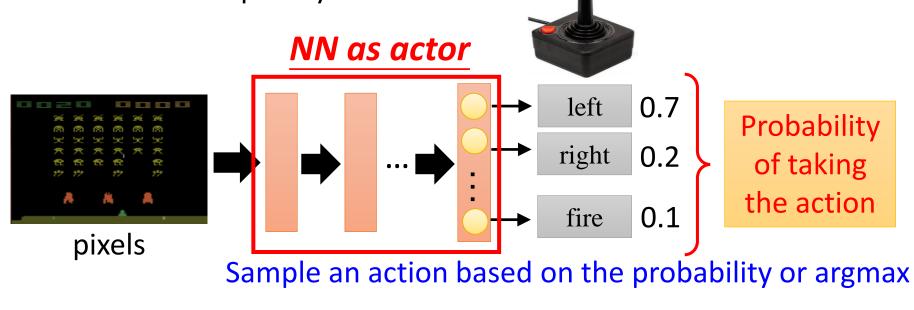
阿光下棋

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

Actor is a Neural network

- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer



Actor can also have continuous action.

Actor – Goodness of an Actor

- Given an actor $\pi(s)$ with network parameter θ^{π}
- Use the actor $\pi(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a_1
 - Machine obtains reward r_1
 - Machine sees observation s₂
 - Machine decides to take a_2
 - Machine obtains reward r_2
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R = \sum_{t=1}^{T} r_t$

Even with the same actor, R is different each time

Randomness in the actor and the game

We define $\overline{R}_{\theta^{\pi}}$ as the expected total reward

 $\overline{R}_{\theta}\pi$ evaluates the goodness of an actor $\pi(s)$

END

$$\begin{aligned} & \operatorname{Actor} - \operatorname{Policy} \, \operatorname{Gradient} \\ & \theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla \overline{R}_{\theta^{\pi}} \quad \operatorname{Using} \theta^{\pi} \text{ to obtain} \left\{ \tau^{1}, \tau^{2}, \cdots, \tau^{N} \right\} \\ & \nabla \overline{R}_{\theta^{\pi}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P(\tau^{n} | \theta^{\pi}) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla \log p(a_{t}^{n} | s_{t}^{n}, \theta^{\pi}) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla \log p(a_{t}^{n} | s_{t}^{n}, \theta^{\pi}) \quad \begin{bmatrix} \operatorname{What} \, \text{if we replace} \\ R(\tau^{n}) \, \text{with} \, r_{t}^{n} \, \dots \end{bmatrix} \\ & \text{If in } \tau^{n} \text{ machine takes } a_{t}^{n} \text{ when seeing } s_{t}^{n} \end{aligned}$$

It is very important to consider the cumulative reward $R(\tau^n)$ of the whole trajectory τ^n instead of immediate reward r_t^n

Tuning θ to increase $p(a_t^n | s_t^n)$

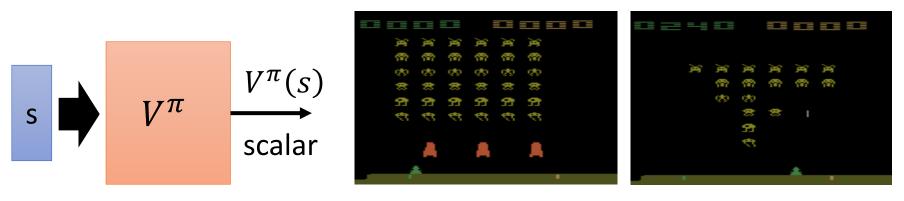
Tuning θ to decrease $p(a_t^n | s_t^n)$

 $R(\tau^n)$ is positive

 $R(\tau^n)$ is negative

Critic

- A critic does not determine the action.
- Given an actor π , it evaluates the how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation (state) s



 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

Critic

V^{以前的阿光}(大馬步飛) = badV^{變強的阿光}(大馬步飛) = good

How to estimate $V^{\pi}(s)$

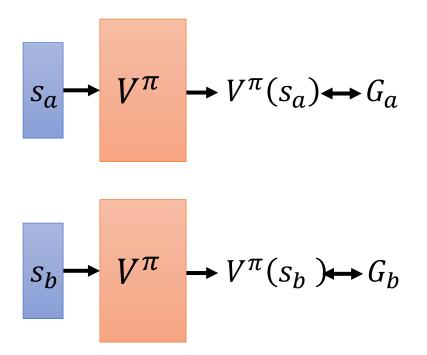
- Monte-Carlo based approach
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_b



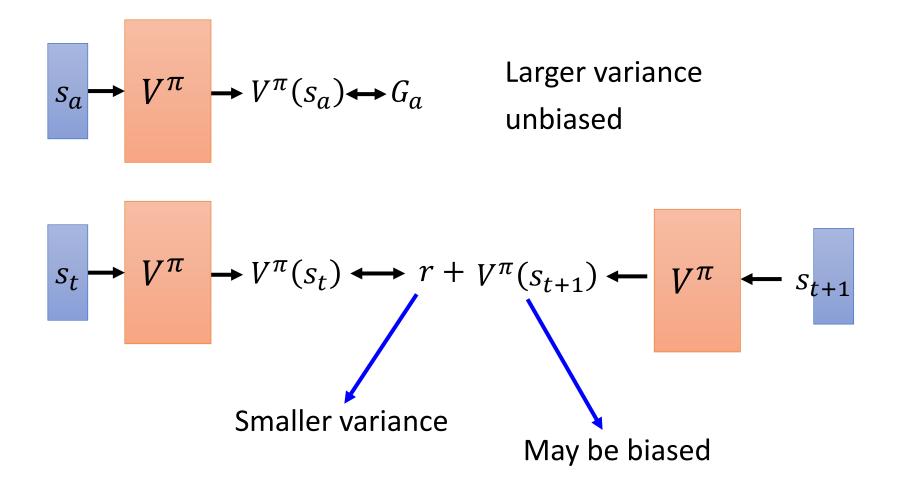
How to estimate $V^{\pi}(s)$

• Temporal-difference approach



Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

MC v.s. TD



MC v.s. TD

[Sutton, v2, Example 6.4]

- The critic has the following 8 episodes
 - $s_a, r = 0, s_b, r = 0$, END
 - $s_b, r = 1$, END
 - s_b , r = 1, END
 - $s_b, r = 0$, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) =? \quad 0? \quad 3/4?$$

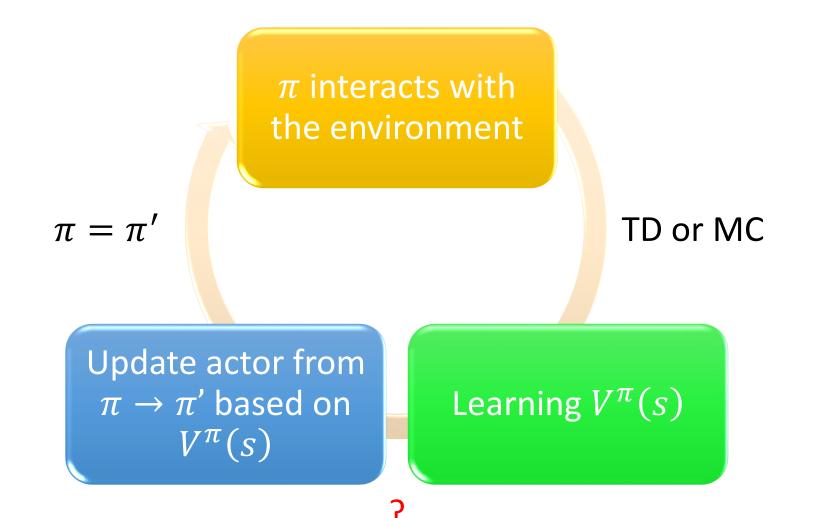
Monte-Carlo: $V^{\pi}(s_a) = 0$

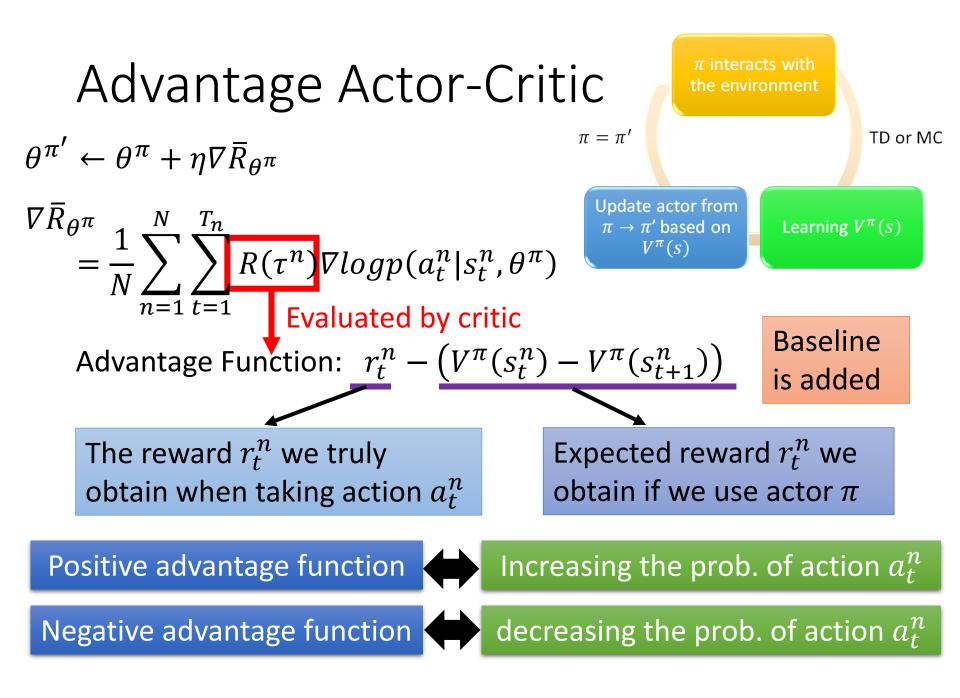
Temporal-difference:

$$V^{\pi}(s_a) + r = V^{\pi}(s_b)$$

3/4 0 3/4

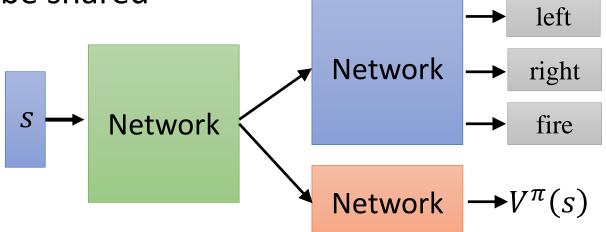
(The actions are ignored here.)





Advantage Actor-Critic

- Tips
 - The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared



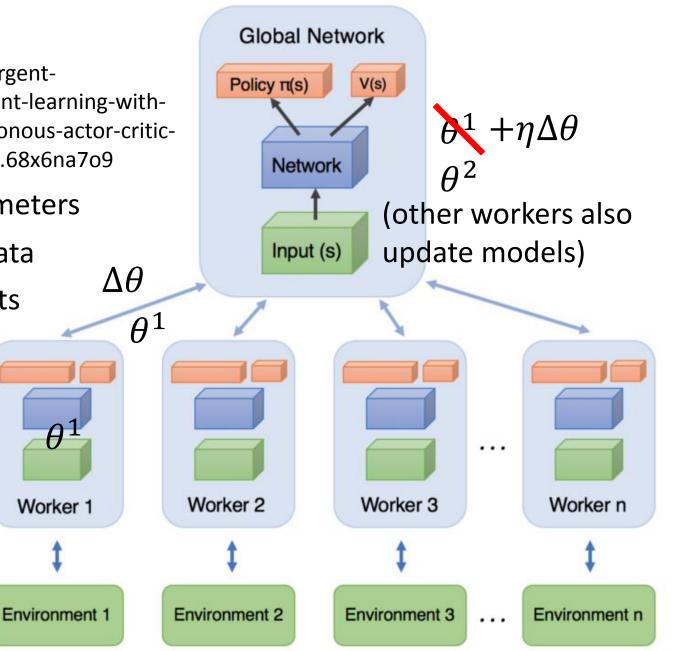
- Use output entropy as regularization for $\pi(s)$
 - Larger entropy is preferred \rightarrow exploration

<u>Asynchronous</u>

Source of image: https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta \theta$

- 1. Copy global parameters
- 2. Sampling some data
- 3. Compute gradients
- 4. Update global models



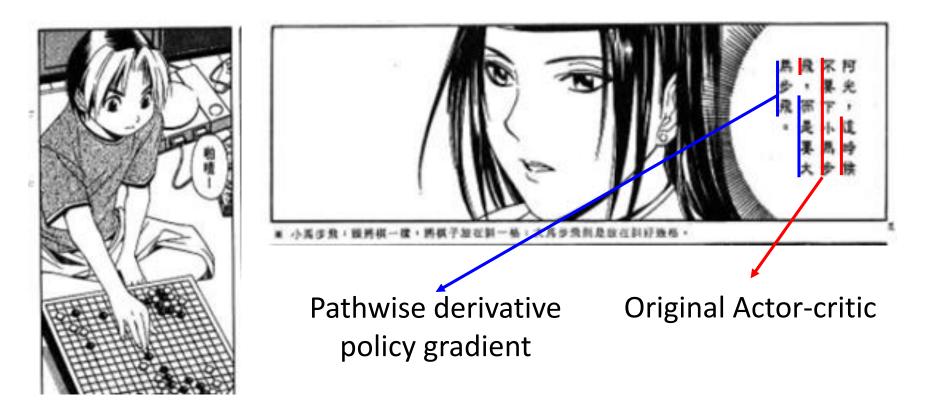
Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, "Deterministic Policy Gradient Algorithms", ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, "CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING", ICLR, 2016

Actor

Critic



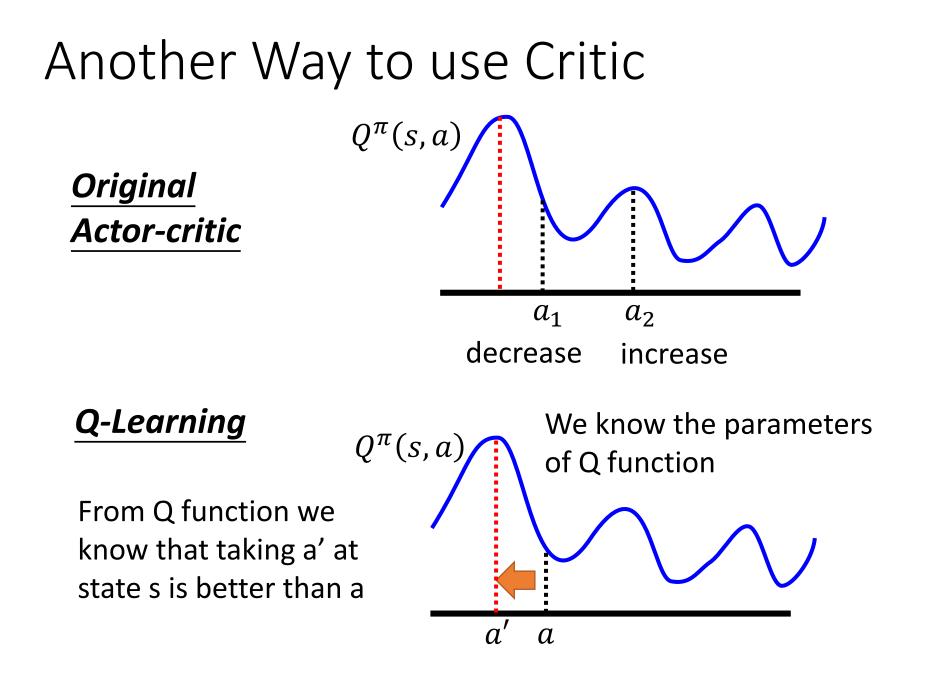
http://www.cartomad.com/comic/109000081104011.html

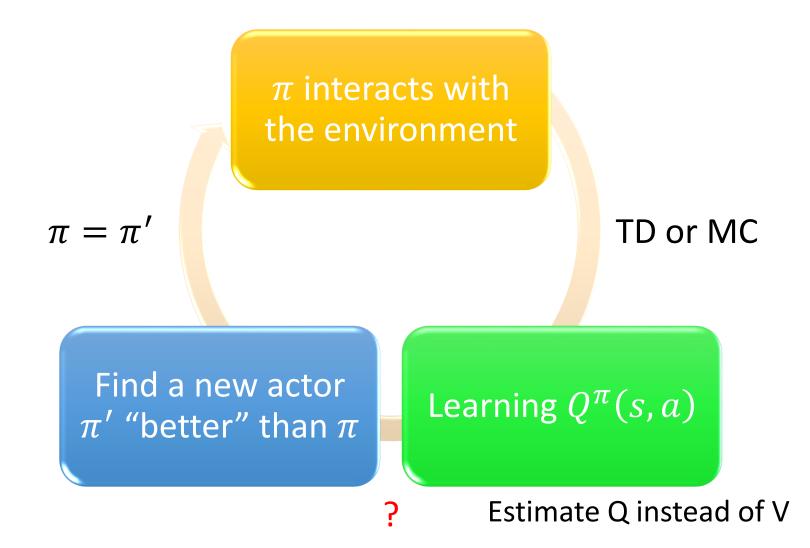
Another Critic

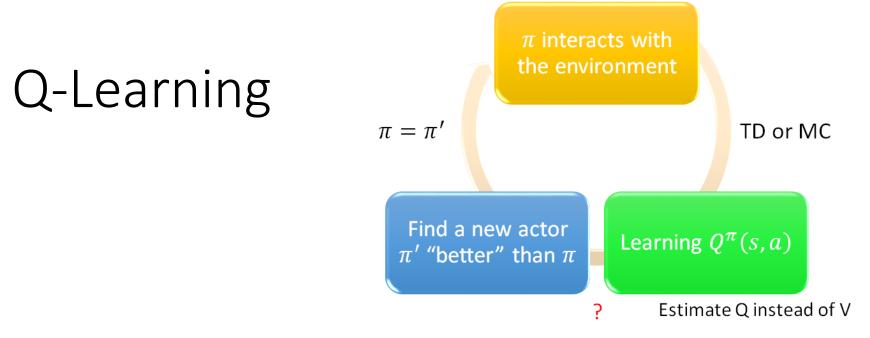
- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

s
$$Q^{\pi}$$
 $Q^{\pi}(s,a)$ s $Q^{\pi}(s,a) = left$
a $Q^{\pi}(s,a)$ s Q^{π} $Q^{\pi}(s,a) = left$
 $Q^{\pi}(s,a) = right$
 $Q^{\pi}(s,a) = fire$

for discrete action only







- Given $Q^{\pi}(s, a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

π' does not have extra parameters. It depends on Q
 Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$V^{\pi'}(s) \ge V^{\pi}(s), \text{ for all state s}$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\le \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s)) = V^{\pi'}(s)$$

$$V^{\pi}(s) \le Q^{\pi}(s, \pi'(s))$$

$$= E_{\pi'}[r_{t+1} + V^{\pi}(s_{t+1})|s_{t} = s]$$

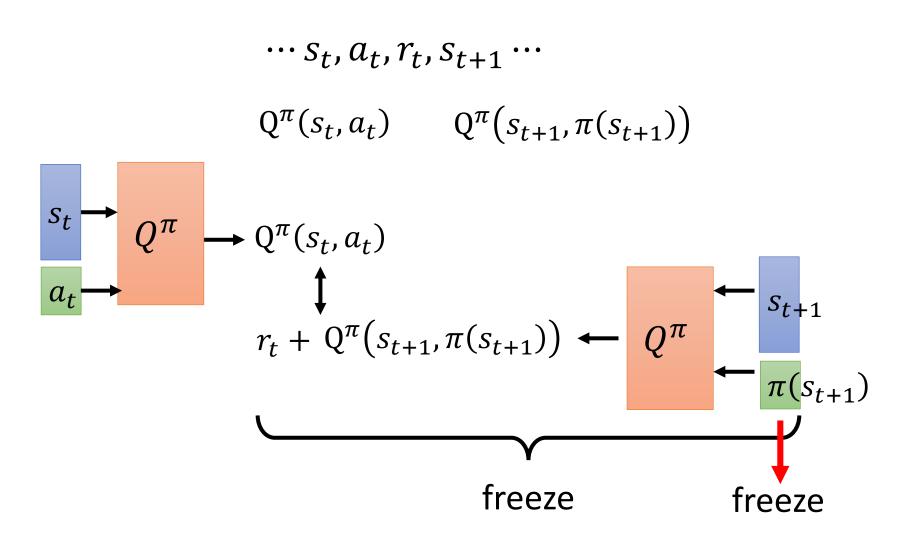
$$\le E_{\pi'}[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s]$$

$$= E_{\pi'}[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2})|s_{t} = s]$$

$$\le E_{\pi'}[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|s_{t} = s]$$

$$\ldots \ldots \le V^{\pi'}(s)$$

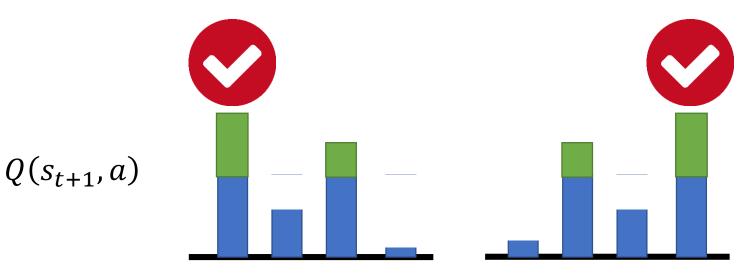
Estimate $Q^{\pi}(s, a)$ by TD



Double DQN

• Q value is usually over estimate

 $Q(s_t, a_t) \longleftarrow r_t + \max_a Q(s_{t+1}, a)$ Tend to select the action that is over-estimated



Double DQN

• Q value is usually over estimate

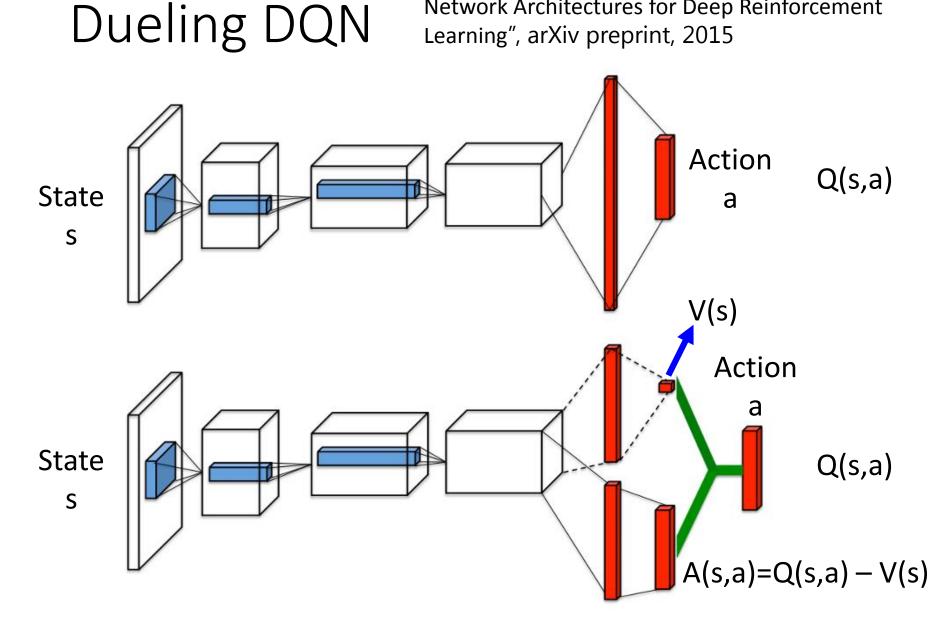
$$Q(s_t, a_t) \longleftarrow r_t + \max_a Q(s_{t+1}, a)$$

Double DQN: two functions Q and Q'

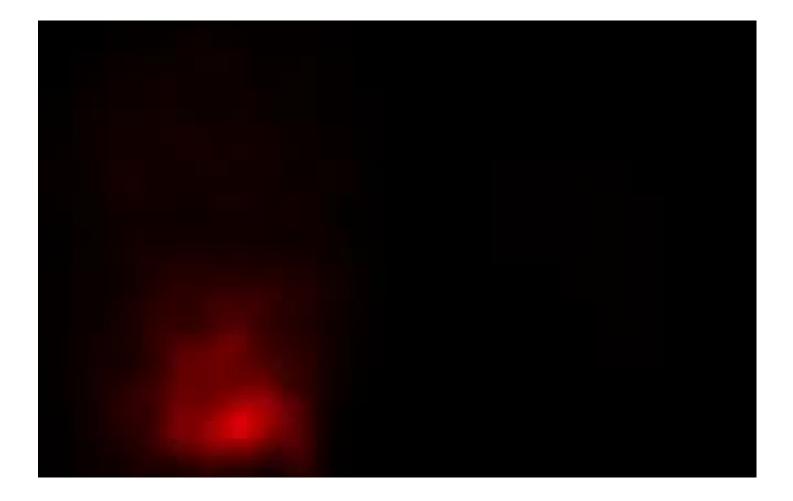
$$Q(s_t, a_t) \longleftarrow r_t + Q'\left(s_{t+1}, \arg\max_a Q(s_{t+1}, a)\right)$$

If Q over-estimate a, so it is selected. Q' would give it proper value. How about Q' overestimate? The action will not select by Q.

Hado V. Hasselt, "Double Q-learning", NIPS 2010 Hado van Hasselt, Arthur Guez, David Silver, "Deep Reinforcement Learning with Double Q-learning", AAAI 2016 Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas, "Dueling Network Architectures for Deep Reinforcement Learning", arXiv preprint, 2015

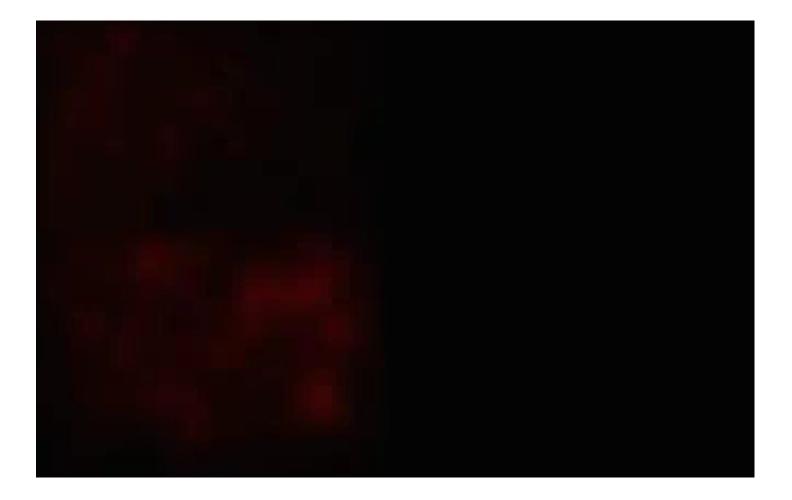


Dueling DQN - Visualization



(from the link in the original paper)

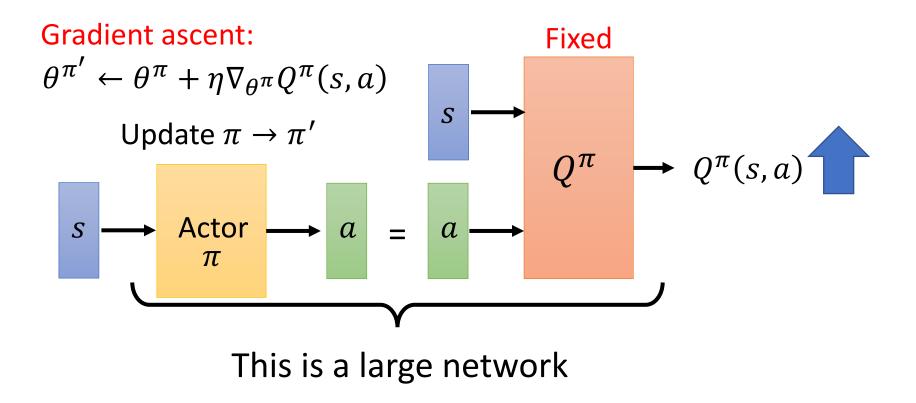
Dueling DQN - Visualization

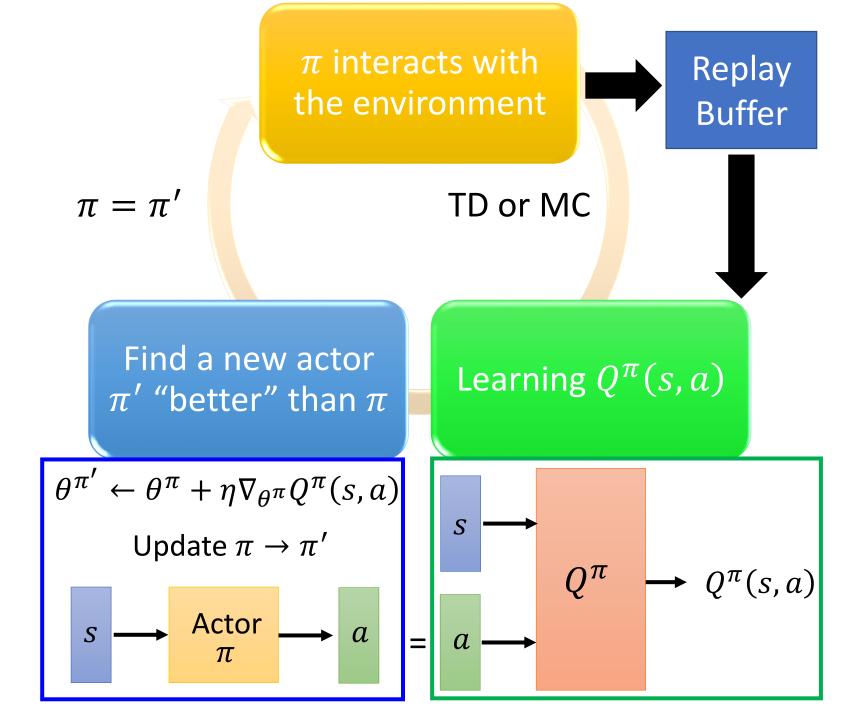


(from the link in the original paper)

Pathwise Derivative Policy Gradient

 $\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$ a is the output of an actor





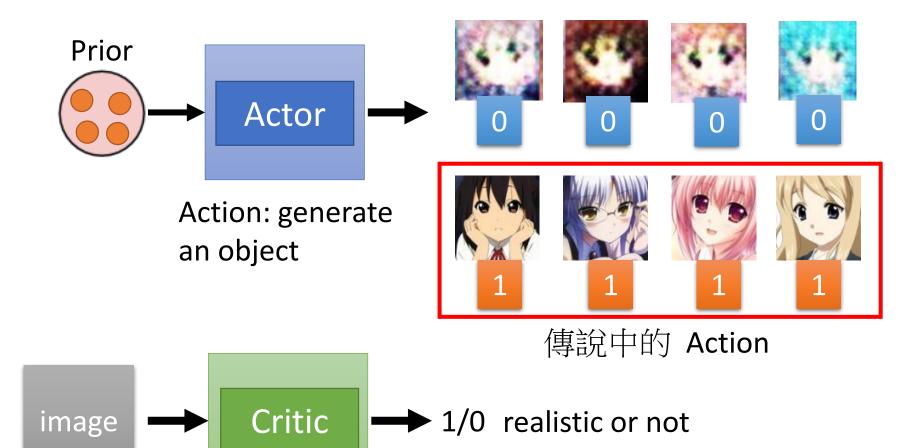
DDPG Algorithm

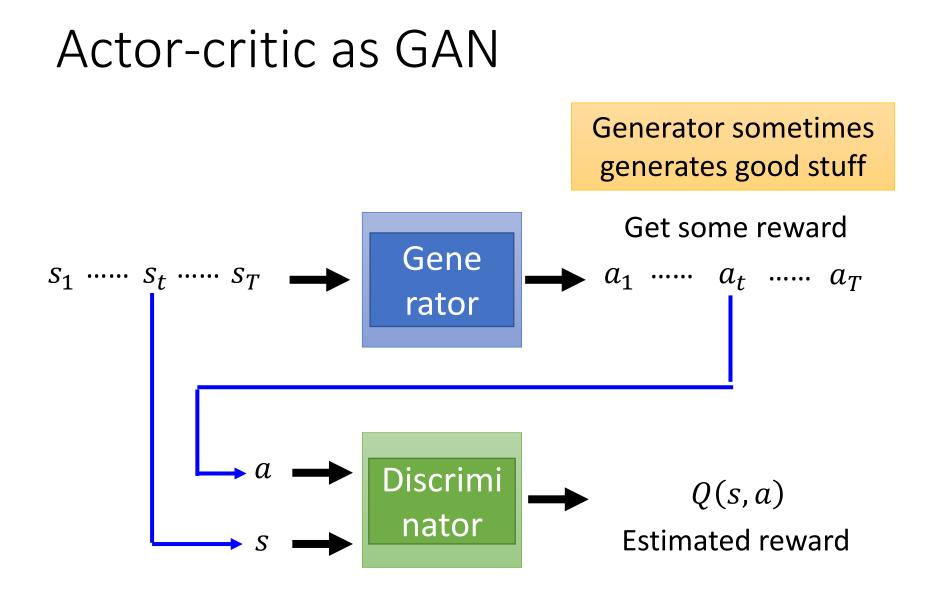
- Initialize critic network $\theta^{\, Q}$ and actor network θ^{π}
- Initialize target critic network $\theta^{Q'} = \theta^Q$ and target actor network $\theta^{\pi'} = \theta^{\pi}$
- Initialize replay buffer R
- In each iteration
 - Use $\pi(s) + noise$ to interact with the environment, collect a set of $\{s_t, a_t, r_t, s_{t+1}\}$, put them in R
 - Sample N examples $\{s_n, a_n, r_n, s_{n+1}\}$ from R
 - Update critic Q to minimize: $L = \sum_{n} (\hat{y}_n Q(s_n, a_n))^2$
 - $\hat{y}_n = r_n + Q'(s_{n+1}, \pi'(s_{n+1}))$ Using target networks
 - Update actor π to maximize: $J = \sum_{n} Q(s_n, \pi(s_n))$
 - Update target networks: The target networks update slower θ^{π}

$$\theta^{\pi'} \leftarrow m\theta^{\pi} + (1-m)\theta^{\pi'} \\ \theta^{Q'} \leftarrow m\theta^{Q} + (1-m)\theta^{Q'}$$

Connection with GAN

GAN as Actor-critic





Method	GANs	AC
Freezing learning	yes	yes
Label smoothing	yes	no
Historical averaging	yes	no
Minibatch discrimination	yes	no
Batch normalization	yes	yes
Target networks	n/a	yes
Replay buffers	no	yes
Entropy regularization	no	yes
Compatibility	no	yes

David Pfau, Oriol Vinyals, "Connecting Generative Adversarial Networks and Actor-Critic Methods", arXiv preprint, 2016